Solving constrained Pell equations
نویسندگان
چکیده
منابع مشابه
Solving constrained Pell equations
Consider the system of Diophantine equations x2 − ay2 = b, P (x, y) = z2, where P is a given integer polynomial. Historically, such systems have been analyzed by using Baker’s method to produce an upper bound on the integer solutions. We present a general elementary approach, based on an idea of Cohn and the theory of the Pell equation, that solves many such systems. We apply the approach to th...
متن کاملSolving Families of Simultaneous Pell Equations
possess at most 3 solutions in positive integers (x, y, z). On the other hand, there are infinite families of distinct integers (a, b) for which the above equations have at least 2 positive solutions. For each such family, we prove that there are precisely 2 solutions, with the possible exceptions of finitely many pairs (a, b). Since these families provide essentially the only pairs (a, b) for ...
متن کاملA matrix LSQR algorithm for solving constrained linear operator equations
In this work, an iterative method based on a matrix form of LSQR algorithm is constructed for solving the linear operator equation $mathcal{A}(X)=B$ and the minimum Frobenius norm residual problem $||mathcal{A}(X)-B||_F$ where $Xin mathcal{S}:={Xin textsf{R}^{ntimes n}~|~X=mathcal{G}(X)}$, $mathcal{F}$ is the linear operator from $textsf{R}^{ntimes n}$ onto $textsf{R}^{rtimes s}$, $ma...
متن کاملSimultaneous Pell equations
Let R and S be positive integers with R < S. We shall call the simultaneous Diophantine equations x −Ry = 1, z − Sy = 1 simultaneous Pell equations in R and S. Each such pair has the trivial solution (1, 0, 1) but some pairs have nontrivial solutions too. For example, if R = 11 and S = 56, then (199, 60, 449) is a solution. Using theorems due to Baker, Davenport, and Waldschmidt, it is possible...
متن کاملArithmetic Progressions on Pell Equations
IF Introduction sn IWWW fremner I onsidered rithmeti progressions on ellipti urvesF fremner onstruted ellipti urves with rithmeti progressions of length UD iFeF rtionl points @X; Y A whose XE oordintes re in rithmeti progressionF sn following pper fremnerD ilvermn nd znkis P showed tht sugroup of the ellipti urve E@QA with E X Y 2 a X@X 2 n 2 A of rnk I doe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1998
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-98-00918-1